Intuitionistic Fuzzy G_{δ} - e -locally Function

G. Saravanakumar¹, S. Tamilselvan² and A. Vadivel³

Research Scholar, Department of Mathematics, Annamalai University, Annamalainagar,

Tamil Nadu-608 002,

Mathematics Section (FEAT), Annamalai University, Annamalainagar, Tamil Nadu-608 002,

(Deputed) Department of Mathematics, Government Arts College (Autonomous),

Karur, Tamil Nadu-639 005

¹saravananguru2612@gmail.com ²tamil au@yahoo.com ³avmaths@gmail.com

ABSTRACT

The purpose of this paper is introduce the concepts of an intuitionistic fuzzy $G_{\delta} - e$ -locally function, intuitionistic fuzzy strongly $G_{\delta} - e$ -locally function, intuitionistic fuzzy $G_{\delta} - e$ -locally homeomorphism, intuitionistic fuzzy $G_{\delta} - e$ -locally irresolute function, intuitionistic fuzzy $G_{\delta} - e$ -locally irresolute function, intuitionistic fuzzy $G_{\delta} - e$ -local T_2 space, intuitionistic fuzzy $G_{\delta} - e$ -local Urysohn space, intuitionistic fuzzy $G_{\delta} - e$ -local compact in intuitionistic fuzzy topological spaces. Also some interesting properties are established.

KEYWORDS AND PHRASES: intuitionistic fuzzy $G_{\delta} - e$ - locally function, intuitionistic fuzzy strongly $G_{\delta} - e$ - locally function, intuitionistic fuzzy $G_{\delta} - e$ - local

homeomorphism, intuitionistic fuzzy G_{δ} -*e*-local connected, intuitionistic fuzzy G_{δ} -*e*-local compact.

AMS (2000) subject classification: 54A40, 54A99, 03E72, 03E99

1 INTRODUCTION

The concept of fuzzy sets was introduced by Zadeh [12] and later Atanassov [1] generalized the idea to intuitionistic fuzzy sets. On the other hand, Coker [3] introduced the notions of an intuitionistic fuzzy topological spaces, intuitionistic fuzzy continuity and some other The concept of related concepts. an intuitionistic fuzzy e-closed set was introduced by Sobana et. al., [10]. Ganster and Relly used locally closed sets in[5] to define LC-continuity and LC-irresoluteness. Balasubramanian [2] introduced and studied the concept of fuzzy G_{δ} set in a fuzzy topological space. In this paper, the concepts

of an intuitionistic fuzzy $G_{\delta} - e$ - locally function, intuitionistic fuzzy strongly $G_{\delta} - e$ locally function, intuitionistic fuzzy G_{δ} e -locally homeomorphism, intuitionistic fuzzy $G_{\delta} - e$ -locally irresolute function, intuitionistic fuzzy $G_{\delta} - e$ - local T_2 space, intuitionistic fuzzy $G_{\delta} - e$ - local Urysohn space, intuitionistic fuzzy $G_{\delta} - e$ - local connected, intuitionistic fuzzy $G_{\delta} - e$ - local compact are introduced and studied. Some interesting properties among these are discussed.

2 PRELIMINARIES

[1] Let X be a nonempty fixed set and I be the closed interval [0,1]. An intuitionistic fuzzy set (IFS) A is an object of the following form $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X \}$ where the mapping $\mu_A: X \to I$ and $\gamma_A: X \to I$ denote the degree of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $\gamma_A(x)$) for each element $x \in X$ to A, respectively, set and the $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for each $x \in X$. Obviously, every fuzzy set A on a nonempty set X is an IFS of the following form, $A = \{ \langle x, \mu_A(x), 1 - \mu_A(x) \rangle \colon x \in X \}$. For the sake of simplicity, we shall use the symbol $A = \langle x, \mu_A, \gamma_A \rangle$ for the intuitionistic fuzzy set $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle \colon x \in X \}.$ [1]Let X be a nonempty set and the IFSs A and B in the $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle \colon x \in X \},\$ form $B = \{ \langle x, \mu_B(x), \gamma_B(x) \rangle : x \in X \}.$ Then [(i)] $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\gamma_A(x) \ge \gamma_B(x)$ for all $x \in X$;

$$[(ii)] \overline{A} = \{ \langle x, \gamma_A(x), \mu_A(x) \rangle \colon x \in X \}$$
 [(iii)]
$$A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x),$$

$$\gamma_{A}(x) \vee \gamma_{B}(x) \rangle : x \in X \}; \qquad [(iv)]$$
$$A \cup B = \{ \langle x, \mu_{A}(x) \vee \mu_{B}(x), \gamma_{A}(x) \land \rangle$$

 $\gamma_{R}(x)$: $x \in X$; [1] The IFS's 0_{x} and 1_{x} are defined by , $0_{\tilde{x}} = \{ \langle x, 0, 1 \rangle : x \in X \}$ and $1_{z} = \{ \langle x, 1, 0 \rangle : x \in X \}$.[3] An intuitionistic fuzzy topology (IFT) in Coker's sense on a nonempty set X is a family T of intuitionistic fuzzy sets in X satisfying the following axioms: $[(i)] 0_{z}, 1_{z} \in T;$ [(ii)] $G_1 \cap G_2 \in T$, for any $G_1, G_2 \in T$; $[(iii)] \cup G_i \in T$ for arbitrary family $\{G_i : i \in J\} \subseteq T$. In this paper by (X,T) or simply by X we will denote the Coker's intuitionistic fuzzy topological space (IFTS). Each IFS which belongs to T is called an intuitionistic fuzzy open set (IFOS) in X. The complement \overline{A} of an IFOS A in X is called an intuitionistic fuzzy closed set (IFCS) in X. [3] Let (X,T) be an IFTS and $A = \{ \langle x, \mu_A, \nu_A \rangle : x \in X \}$ be an IFS in X. Then the intuitionistic fuzzy closure and intuitionistic fuzzy interior of A are defined [(i)] $IFcl(A) = \bigcap \{C : C \text{ is an IFCS in } \}$ by X and $C \supseteq A$; [(ii)] $IFint(A) = \bigcup \{D : D \text{ is an IFOS in } \}$ X and $D \subseteq A$; [1] For any IFS A in (X,T) $[(i)] cl(\overline{A}) = int(A)$ we have [(ii)] $int(\overline{A}) = cl(A)$ [3]Let A, $A_i(i \in J)$ be IFSs in X, B, $B_i (j \in K)$ IFSs in Y and $f: X \to Y$ а function. Then [(i)] $A \subseteq f^{-1}(f(A))$ (If f is injective, then $A = f^{-1}(f(A)))$. [(ii)] $f(f^{-1}(B)) \subseteq B$ (If f is surjective, then $f(f^{-1}(B)) = B$).

 $[(iii)] f^{-1}(\cup B_j) = \cup f^{-1}(B_j).$

 $[(iv)] f^{-1}(\cap B_j) = \cap f^{-1}(B_j).$

 $[(v)] f^{-1}(1_{\sim}) = 1_{\sim}. \qquad [(vi)] f^{-1}(0_{\sim}) = 0_{\sim}.$ $[(vii)] f^{-1}(\overline{B}) = \overline{f^{-1}(B)}. \quad [4] \text{ Let } X \text{ be a nonempty set and } x \in X \text{ a fixed element in } X \text{ . If } r \in I_0, \quad s \in I_1 \text{ are fixed real numbers}$

that $r+s \leq 1$, such then IFS the $x_{r,s} = \langle x, x_r, 1 - x_{1-s} \rangle$ is called and intuitionistic fuzzy point (IFP) in X, where rdenotes the degree of membership of x_{rs} , s denotes the degree of non membership of $x_{r,s}$ and $x \in X$ the support of $x_{r,s}$. The IFP $x_{r,s}$ is contained in the IFS $A(x_{r,s} \in A)$ if and only if $r < \mu_A(x)$, $s > \gamma_A(x)$. [6] An IFS U of an IFTS X is called [(i)] neighborhood of an IFP c(a,b), if there exists an \$IFOS G\$ in X such that $c(a,b) \in G \leq U$. [(ii)]q neighborhood of an IFP c(a,b), if there exists an \$IFOS G\$ in X such that $c(a,b)qG \leq U$. [3] Let X and Y be two nonempty sets and $f: X \to Y$ be a function. [(i)]If $B = \{ \langle y, \mu_B(y), \gamma_B(y) \rangle : y \in Y \}$ is an IFS in Y, then the preimage of B under f (denoted $f^{-1}(B)$) is defined by by $f^{-1}(B) = \{ \langle x, f^{-1}(\mu_B)(x), f^{-1}(\gamma_B)(x) \rangle : x \in X \}$ [(ii)]If $A = \{ \langle x, \lambda_A(x), v_A(x) \rangle : x \in X \}$ is an IFS in X, then the image of A under f(denoted by f(A)) is defined bv $f(A) = \{ \langle y, f(\lambda_A(y)), (1 - f(1 - \nu_A))(y) \rangle :$ $\in X$ [11] Let A be IFS in an IFTS (X,T). A is called an [(i)] intuitionistic fuzzy regular open set (briefly IFROS) if A = IFRCS)if A = clint(A) [(ii)] intcl(A) intuitionistic fuzzy regular closed set (briefly IFRCS) if A = clint(A). [2] Let (X,T) be a fuzzy topological space and λ be a fuzzy set in X. λ is called G_{δ} set if $\lambda = \bigwedge_{i=1}^{\infty} \lambda_i$ where each $\lambda_i \in T$. The complement of fuzzy G_{λ} is fuzzy F_{σ} [5] A subset A of a space (X,T)called locally closed (briefly is lc)*if* $A = C \cap D$, where C is open and D is closed in (X,T). [11] Let (X,T) be an IFTS and $A = \langle x, \mu_A(x), \nu_A(x) \rangle$ be a IFS in X. Then the fuzzy δ closure of A are denoted and defined by $cl_{\delta}(A) = \bigcap \{K : K \text{ is } \}$ IFRCS in X and $A \subset K$ an and

 $int_{\delta}(A) = \bigcup \{G: G \text{ is an IFROS in } X \text{ and } \}$ $G \subset A$. [10] Let A be an IFS in an IFTS (X,T). A is called an intuitionistic fuzzy e-open set (IFeOS, for short) in X if $A \subseteq clint_{\delta}(A) \cup intcl_{\delta}(A) \}$ [8] Let (X,T)be an intuitionistic fuzzy topological space. Let $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X \}$ be an intuitionistic fuzzy set on an intuitionistic fuzzy topological space (X,T). Then A is said to be intuitionistic fuzzy e - locally closed set (in short, IF-*e*-lcs)*if* $A = C \cap D$, where $C = \{ \langle x, \mu_C(x), \gamma_C(x) \rangle \colon x \in X \}$ is an fuzzy intuitionistic e-open set and $D = \{ \langle x, \mu_D(x), \gamma_D(x) \rangle \colon x \in X \}$ is an intuitionistic fuzzy e-closed set in (X,T).[8] |Let (X,T)be an intuitionistic fuzzy topological space. Let $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle \colon x \in X \}$ be an intuitionistic fuzzy set on an intuitionistic fuzzy topological space X. Then A is said to be an intuitionistic fuzzy eG_{δ} - set if

$$A = \bigcap_{i=1}^{\infty} A_i,$$
 where

 $A_{i} = \{ \langle x, \mu_{A_{i}}(x), \gamma_{A_{i}}(x) \rangle : x \in X \} \text{ is an}$ intuitionistic fuzzy *e*-open set in an intuitionistic fuzzy topological space (X,T). [8] Let (X,T) be an intuitionistic fuzzy topological`space Let

 $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle \colon x \in X \}$ be an intuitionistic fuzzy set on an intuitionistic fuzzy topological space (X,T). Then A is said to be an intuitionistic fuzzy eG_{δ} -locally closed set (in short, IF- eG_{δ} -lcs) if A=C $\cap D$, where $C = \{ \langle x, \mu_C(x), \gamma_C(x) \rangle : x \in X \}$ is an intuitionistic fuzzy eG_{δ} set and $D = \{ \langle x, \mu_D(x), \gamma_D(x) \rangle \colon x \in X \}$ is an intuitionisitic fuzzy e-closed set in (X,T). The complement of an intuitionistic fuzzy eG_{δ} -locally closed set is said to be an intuitionistic fuzzy eG_{δ} -locally open set (in short, IF eG_{δ} -los). [8] Let (X,T) be an

intuitionistic fuzzy topological space. Let $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle \colon x \in X \}$ be an intuitionistic fuzzy set on an intuitionistic fuzzy topological space (X,T). Then A is said to be an intuitionistic fuzzy G_{δ} - *e* -locally closed set (in short, IF G_{δ} - *e* -lcs) if A=B $\cap C$, where $B = \{ \langle x, \mu_B(x), \gamma_B(x) \rangle : x \in X \}$ is an fuzzy G_{δ} intuitionistic set and $C = \{ \langle x, \mu_C(x), \gamma_C(x) \rangle \colon x \in X \}$ is an intuitionisitic fuzzy e-closed set in (X,T)The complement of an intuitionistic fuzzy G_{δ} e-locally closed set is said to be an intuitionistic fuzzy G_{δ} - *e* -locally open set (in short, IF G_{δ} - e -los) [8]Let (X,T) be an intuitionistic fuzzy topological space. Let $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle \colon x \in X \}$ be an intuitionistic fuzzy set on an intuitionistic topological space fuzzy (X,T). The intuitionistic fuzzy G_{δ} - e -locally closure of A is denoted and defined by $IFG_{\delta} - e$ $lcl(A) = \bigcap \{B : B = \langle x, \mu_B(x), \gamma_B(x) \rangle : x \in X$ is an intuitionistic fuzzy G_{δ} - *e* -locally closed set in X and $A \subseteq B$.[8]Let (X,T) be an intuitionistic fuzzy topological space. Let $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle \colon x \in X \}$ be an intuitionistic fuzzy set on an intuitionistic topological space (X,T). fuzzy The intuitionistic fuzzy G_{δ} - e -locally interior of A is denoted and defined by $IFG_{\delta} - e$ $lint(A) = \bigcup \{B : B = \{ \langle x, \mu_B(x), \gamma_B(x) \rangle : x \in X \}$ is an intuitionistic fuzzy G_{δ} -e-locally open set in X and $B \subseteq A$. [8] Let (X,T) be an intuitionistic fuzzy topological space. For any fuzzy two intuitionistic sets $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle \colon x \in X \}$ and $B = \{ \langle x, \mu_B(x), \gamma_B(x) \rangle \colon x \in X \}$ of an intuitionistic fuzzy topological space (X,T)then the following statements are true. (i) $IFG_{\delta} - e - lcl(0) = 0$ (ii) $A \subseteq B \Longrightarrow IFG_{\delta} - e - lcl(A) \subseteq IFG_{\delta} - e_{\text{(iii)}}$ -lcl(B)

$$IFG_{\delta} - e - lcl(IFG_{\delta} - e - lcl(A)) =$$
(iv)

$$IFG_{\delta} - e - lcl(A)$$

$$IFG_{\delta} - e - lcl(A \cup B) = (IFG_{\delta} - e - lcl(A)) \cup$$
(
$$IFG_{\delta} - e - lcl(B)$$

[8] [(i)] $IFG_{\delta} - e - lcl(A) = A$ if and only if *A* is an intuitionistic fuzzy $G_{\delta} - e$ -locally closed set [(ii)] $IFG_{\delta} - lint(A) \subseteq A \subseteq IFG_{\delta} - e - lcl(A)$ [(iii)] $IFG_{\delta} - e - lint(1_{\sim}) = 1_{\sim}$ [(iv)] $IFG_{\delta} - lint(0_{\sim}) = 0_{\sim}$

[(v)] $IFG_{\delta} - e - lcl(1_{\sim}) = 1_{\sim} [3]$ Let (X,T) and (Y,S) be two IFT's and let $f: X \to Y$ be a function. Then f is said to be intuitionistic fuzzy continuous iff the preimage of each IFS in S is an IFS in T. [10]Let (X,T) and (Y,S) be two IFT's and let $f: X \to Y$ be a function. Then f is said to be intuitionistic fuzzy e-continuous iff the preimage of each IFS in S is an IFO in T.

3 Intuitionistic fuzzy G_{δ} -e- locally function

DEFINITION. 3.1 Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. Let $f:(X,T) \to (Y,S)$ be an intuitionistic fuzzy mapping. Then f is said to be an [(i)]intuitionistic fuzzy $G_{\delta} - e$ locally function, if for each intuitionistic fuzzy closed set A in an intuitionistic fuzzy topological space (X,T), f(A) is an intuitionistic fuzzy G_{δ} -e-locally closed set in an intuitionistic fuzzy topological space (Y,S). [(ii)] intuitionistic fuzzy strongly G_{δ} - *e* -locally function, if for each intuitionistic fuzzy G_{δ} e-closed set A in an intuitionistic fuzzy topological space (X,T), f(A)is an intuitionistic fuzzy G_{δ} - e -locally closed set in an intuitionistic fuzzy topological space (Y,S).

THEOREM.3.1 Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. Let $f:(X,T) \rightarrow (Y,S)$ be an intuitionistic fuzzy mapping. Then the following statements are equivalent (i) f is an intuitionistic fuzzy G_{δ} -e-locally function(ii)foreach intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (Y,S) and each intuitionistic fuzzy closed set B of an intuitionistic fuzzy topological space (X,T)with $f^{-1}(A) \subseteq B$, there is an intuitionistic fuzzy $G_{\delta} - e$ -locally closed set C of an intuitionistic fuzzy topological space (Y,S)with $A \subseteq C$ such that $f^{-1}(C) \subseteq B$. (iii) $f^{-1}(IFG_{\delta} - e - lcl(A)) \subseteq IFcl(f^{-1}(A))$,

for each intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (Y,S). (iv) $f(IFint(B)) \subseteq IFG_{\delta} - e - lint(f(B))$, for each intuitionistic fuzzy set B of an intuitionistic fuzzy topological space (X,T). **Proof.** (i) \Rightarrow (ii): Suppose f is an intuitionistic fuzzy G_{δ} - *e* -locally function. Let A be any intuitionistic fuzzy set A in an intuitionistic fuzzy topological space (Y,S). Let B be any intuitionistic fuzzy closed in an intuitionistic fuzzy topological space (X,T)such that $f^{-1}(A) \subseteq B$. Let $C = f(\overline{B})$. Then C is an intuitionistic fuzzy G_{δ} - e -locally closed set in an intuitionistic fuzzy topological space (Y,S) and $A \subseteq C$. We have, $f^{-1}(C) = f^{-1}(\overline{f(\overline{B})}) = \overline{f^{-1}(f(\overline{B}))} \subset B.$ Therefore, $f^{-1}(C) \subseteq B$.(ii) \Rightarrow (i): Let D be an intuitionistic fuzzy open set in an intuitionistic fuzzy topological space (X,T). A = f(D) and $B = \overline{D}$. Put Thus $f^{-1}(A) = f^{-1}(\overline{f(\overline{D})}) = f^{-1}(f(\overline{D})) \subseteq \overline{D}$. By hypothesis, there exists an intuitionistic fuzzy topological space (Y,S) with $A \subseteq C$ such $f^{-1}(C) \subseteq B = \overline{D}.$ that Then, $f^{-1}(C) \supset D \Longrightarrow D \subset f^{-1}(\overline{C})$. Hence, $f(D) \subseteq f(f^{-1}(\overline{C})) \subseteq \overline{C}$ (3.1) Also, since $A \subseteq C$, we have $\overline{f(D)} \subseteq C$. This implies $f(D) \supset \overline{C}$. (3.2) From (3.1) and (3.2), we get $f(D) = \overline{C}$ is an intuitionistic fuzzy G_{δ} e-locally closed set in an intuitionistic fuzzy topological space (Y,S). Hence f is an G_{δ} - *e* -locally intutionistic fuzzy function.(ii) \Rightarrow (iii): Let A be an intuitionistic

fuzzy set in an intuitionistic fuzzy topological space (Y,S). Since $IFcl(f^{-1}(A))$ is an intuitionistic fuzzy closed set in an intuitionistic fuzzy topological space (X,T)with $f^{-1}(A) \subseteq IFcl(f^{-1}(A))$. Then by (ii), there is an intuitionistic fuzzy G_{δ} - *e* -locally closed set C in an intuitionistic fuzzy space topological (Y,S)with $A \subseteq C, f^{-1}(IFG_{\delta} - e - lcl(A)) \subseteq IFG_{\delta} - e - lcl(A)$ $lcl(C) \subseteq f^{-1}(C) \subseteq IFcl(f^{-1}(A)).$ $f^{-1}(IFG_s - e -$ Therefore, $lcl(A)) \subseteq IFcl(f^{-1}(A))$.(iii) \Rightarrow (iv): $f^{-1}(IFG_{\delta} - e - lcl(A)) \subseteq IFcl(f^{-1}(A)),$ for each intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (Y, S). $A = f(B), f^{-1}(IFG_s - e -$ Putting $lcl(\overline{f(B)}) \subseteq IFcl(f^{-1}(\overline{f(B)}))) \subseteq$ $IFcl(f^{-1}(f(\overline{B}))) \subseteq IFcl(\overline{B}) \subseteq \overline{IFint(B)},$ $f^{-1}(\overline{IFG_{\delta} - e - lint(f(B)))} \subseteq \overline{IFint(B)}$ complement sides, on both Taking $f^{-1}\overline{(IFG_{\delta}-e-lint(f(B)))} \subseteq \overline{IFint(B)},$ $f^{-1}(IFG_{\delta} - e - lint(f(B))) \supseteq IFint(B)$ Therefore, $f(IFint(B)) \subseteq IFG_{\delta} - e$ $lint(f(B)).(iv) \Rightarrow (i)$: It is obvious. **DEFINITION.3.2** Let (X,T) and (Y,S) be

any two intuitionistic fuzzy topological spaces. Let $f:(X,T) \rightarrow (Y,S)$ be an intuitionistic fuzzy mapping. Then f is said to be an intuitionistic fuzzy G_{δ} -e-locally homeomorphism if f is one to one, onto, intuitionistic fuzzy G_{δ} -e-locally irresolute function and intuitionistic fuzzy strongly G_{δ} -e-locally function.

THEOREM.3.2 Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. If $f:(X,T) \rightarrow (Y,S)$ is an intuitionistic fuzzy $G_{\delta} - e$ -locally homeomorphism. Then the following statements are valid. (i)For any intuitionistic fuzzy set A in an intuitionistic fuzzy topological space (X,T), $IFG_{\delta} - e$ $lcl(f(A)) = f(IFG_{\delta} - e - lcl(A))$. (ii)For any intuitionistic fuzzy set A in an intuitionistic fuzzy topological space (X,T), $f(\overline{IFG_{\delta}} 0e0lint((\overline{A}))) = \overline{IFG_{\delta}} 0e0lint(f(\overline{A}))$ (iii)For any intuitionistic fuzzy set A in an intuitionistic fuzzy topological space (Y,S), $IFG_{\delta} - e - lcl(f^{-1}(A)) = f^{-1}(IFG_{\delta} - e - lcl(A))$. (iv)For any intuitionistic fuzzy set

A in an intuitionistic fuzzy topological space (Y,S),

$$f^{-1}(IFG_{\delta}0e0lint((\overline{A}))) = IFG_{\delta}0e0lint(f^{-1}(\overline{A}))$$

Proof. (i) Let A be any intuitionistic fuzzy set in an intuitionistic fuzzy topologial space (X,T). Since f is an intuitionistic fuzzy G_{δ} - *e* -locally irresolute function. By (ii) and (iii) Theorem of 3.5[9] $f(IFG_{\delta} - e - lcl(A)) \subseteq IFG_{\delta} - e - lcl(f(A))$ (3.3) $IFG_{\delta} - e - lcl(f(A)) \subseteq f(IFG_{\delta} - e - lcl((A)))$ (3.4)From (3.3) and (3.4) implies that $IFG_{\delta} - e$ $lcl(f(A)) = f(IFG_{\delta} - e - lcl((A)))$.(ii) Let A be any intuitionistic fuzzy set in an intuitionistic fuzzy topological space (X,T). Since f is an intuitionistic fuzzy G_{δ} -elocally homeomorphism. Then by above condition (ii), $IFG_{\delta} - e$ $lcl(f(A)) = f(IFG_{\delta} - e - lcl((A)))$.Now, $IFG_{\delta} - e - lint(\overline{f(A)}) = \overline{f(IFG_{\delta} - e - lint(\overline{A}))},$ $f(\overline{IFG_{\delta} - e - lint(\overline{A})}) = \overline{IFG_{\delta} - e - lint(f(\overline{A}))}.$

(iii) Let A be any intuitionistic fuzzy set in an intuitionistic fuzzy topological space (Y,S). Since f is an intuitionistic fuzzy G_{δ} e-locally homeomorphism. Since f is an intuitionistic fuzzy strongly G_{δ} - e -locally function. Also f^{-1} is an intuitionistic fuzzy G_{δ} - *e* -locally irresolute function. By (ii) and (iii) of Theorem 3.5[9] $IFG_{\delta} - e - lcl(f^{-1}(A)) \subseteq f^{-1}(IFG_{\delta} - e - lcl(A)) (3.5)$ $f^{-1}(IFG_{\delta} - e - lcl(A)) \subseteq IFG_{\delta} - e - lcl(f^{-1}(A)) (3.6)$ From (3.5) and (3.6) implies that $IFG_{\delta} - e$ $lcl(f^{-1}(A)) = f^{-1}(IFG_{\delta} - e - lcl(A))$.(iv) Let A be any intuitionistic fuzzy set in an

intuitionistic fuzzy topological space (Y, S). Since f is an intuitionistic fuzzy $G_{\delta} - e$ locally homeomorphism. Then by above condition (iii), $IFG_{\delta} - e$ $lcl(f^{-1}(A)) = f^{-1}(IFG_{\delta} - e - lcl(A))$. Taking complement on bothsides, $\overline{IFG_{\delta} - e - lint(\overline{f^{-1}(A)})} = \overline{f^{-1}(IFG_{\delta} - e - lint(\overline{A}))},$

$$f^{-1}(\overline{IFG_{\delta} - e - lint(\overline{A})}) = \overline{IFG_{\delta} - e - lint(f^{-1}(\overline{A}))}$$

THEOREM.3.3 Let (X,T), (Y,S) and (Z,R) be any three intuitionistic fuzzy topological spaces. If $f:(X,T) \to (Y,S)$ $g:(Y,S) \rightarrow (Z,R)$ be any and two intuitionistic fuzzy mappings. Then the following statements are valid. [(i)]If f is an intuitionistic fuzzy G_{δ} - e -locally irresolute function and g is an intuitionistic fuzzy G_{δ} e -locally continuous function, then $g^{\circ}f$ is an intuitionistic fuzzy G_{δ} - *e* -locally continuous function. [(ii)]If f is an intuitionistic fuzzy G_{δ} - *e* -locally continuous function and *g* is an intuitionistic fuzzy weakly G_{δ} - *e* -locally continuous function, then $g^{\circ}f$ is an intuitionistic fuzzy G_{δ} - *e* -locally irresolute function.

Proof. (i) Let A be any intuitionistic fuzzy closed set in an intuitionistic fuzzy topological space (Z,R). Since g is an intuitionistic fuzzy G_{δ} - e -locally continuous function. $g^{-1}(A)$ is an intuitionistic fuzzy $G_{\delta} - e$ locally closed set in an intuitionistic fuzzy topological space (Y,S). Since f is an intuitionistic fuzzy G_{δ} - *e* -locally irresolute function. $f^{-1}(g^{-1}(A))$ is an intuitionistic fuzzy G_{δ} - *e* -locally closed set in an intuitionistic fuzzy topological space (X,T). $(g^{\circ}f)^{-1}(A) = f^{-1}(g^{-1}(A))$ is an Now. intuitionistic fuzzy G_{δ} - e -locally closed set in an intuitionistic fuzzy topological space (X,T). Hence, $g^{\circ}f$ is an intuitionistic fuzzy G_{δ} - *e* -locally continuous function.(ii) Let A

be any intuitionistic fuzzy G_{δ} - *e* -locally closed set in an intuitionistic fuzzy topological space (Z,R). Since g is an intuitionistic fuzzy weakly G_{δ} - *e* -locally continuous function, $g^{-1}(A)$ is an intuitionistic fuzzy closed set in an intuitionistic fuzzy topological space (Y,S). Since f is an intuitionistic fuzzy G_{δ} - *e* -locally continuous function, $f^{-1}(g^{-1}(A))$ is an intuitionistic fuzzy G_{δ} - e locally closed set in an intuitionistic fuzzy topological (X,T). Now space $(g^{\circ}f)^{-1}(A) = f^{-1}(g^{-1}(A))$ is an intuitionistic fuzzy G_{δ} - e -locally closed set in an intuitionistic fuzzy topological space (X,T). Hence, $g^{\circ}f$ is an intuitionistic fuzzy G_{δ} - *e* -locally irresolute function.

DEFINITION.3.3 An intuitionistic fuzzy topological space (X,T) is said to be an intuitionistic fuzzy $G_{\delta} - e$ -local T_2 space if and only if for every intuitionistic fuzzy points $c_{r,s}$ and $d_{m,n}$ in an intuitionistic fuzzy topological space (X,T) and $c \neq d$ there exists an intuitionistic fuzzy $G_{\delta} - e$ -locally open sets $G = \langle x, \mu_G, \gamma_G \rangle, H = \langle x, \mu_H, \gamma_H \rangle$ with

 $\mu_G(c) = 0, \gamma_G(c) = 1, \mu_H(d) = 1, \gamma_H(d) = 0$ and $G \cap H = 0$.

PROPOSITION.3.1 Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. Let $f:(X,T) \rightarrow (Y,S)$ be an intuitionistic fuzzy injective mapping and intuitionistic fuzzy $G_{\delta} - e$ -locally continuous function. If (Y,S) is an intuitionistic fuzzy T_2 space, then (X,T) is an intuitionistic fuzzy $G_{\delta} - e$ -local T_2 space.

Proof. Let $c_{r,s}$ and $d_{m,n}$ be an intuitionistic fuzzy points in an intuitionistic fuzzy topological space (X,T) and $c \neq d$. By intuitionistic fuzzy injective function of f, we have $f(c) \neq f(d)$. Since, (Y,S) is an intuitionistic fuzzy T_2 space, there exists an intuitionistic fuzzy open sets $G = \langle y, \mu_G, \gamma_G \rangle, H = \langle y, \mu_H, \gamma_H \rangle$ of S with

$$\mu_G(f(c)) = 0, \gamma_G(f(c)) = 1, \mu_H(f(d)) = 1,$$

$$\gamma_H(f(d)) = 0$$

and $G \cap H = 0_{\sim}$. Since f is an intuitionistic fuzzy $G_{\delta} - e$ -locally continuous function. This

 $f^{-1}(G) = \langle x, f^{-1}(\mu_G), f^{-1}(\gamma_G) \rangle,$

implies

 $f^{-1}(H) = \left\langle x, f^{-1}(\mu_H), f^{-1}(\gamma_H) \right\rangle$ and $N^{IFG_{\delta}-e-lq}(c_{r,s})$ and $N^{IFG_{\delta}-e-lq}(d_{m,n})$ respectively. That is, $f^{-1}(G)$ and $f^{-1}(H)$ are intuitionistic fuzzy G_{δ} -e-locally open sets.

 $f^{-1}(\mu_G)(c_{r,s}) = \mu_G(f(c)) = 0, f^{-1}(\gamma_G)(c_{r,s}) =$ $\gamma_G(f(c)) = 1, f^{-1}(\mu_H)(d_{m,n}) = \mu_H(f(d)) = 1,$ $f^{-1}(G) \cap f^{-1}(H) = f^{-1}(G \cap H) = f^{-1}(0_{\sim}) = 0_{\sim}$. Hence, (X,T) is an intuitionistic fuzzy G_{δ} e-local T_2 space.

PROPOSITION.3.2 Let (X,T) and (Y,S)be any two intuitionistic fuzzy topological spaces. Let $f:(X,T) \rightarrow (Y,S)$ be an intuitionistic fuzzy injective mapping and intuitionistic fuzzy weakly $G_{\alpha} - e$ -locally continuous function. If (Y,S) is an intuitionistic fuzzy $G_{\alpha} - e$ -local T_2 space, then (X,T) is an intuitionistic fuzzy T_2 space.

Proof. Let $c_{r,s}$ and $d_{m,n}$ be an intuitionistic fuzzy points in an intuitionistic fuzzy topological space (X,T) and $c \neq d$. By intuitionistic fuzzy injective function of f, we have $f(c) \neq f(d)$. Since, (Y,S) is an intuitionistic fuzzy $G_{\delta} - e$ -local T_2 space, there exists an intuitionistic fuzzy $G_{\delta} - e$ locally open sets $G = \langle y, \mu_G, \gamma_G \rangle, H = \langle y, \mu_H, \gamma_H \rangle$ of S with $\mu_G(f(c)) = 0, \gamma_G(f(c)) = 1, \mu_H(f(d))$ $= 1, \gamma_H(f(d)) = 0$

 $G \cap H = 0_{\sim}$. Since f is an intuitionistic fuzzy weakly $G_{\delta} - e$ -locally continuous function. This implies $f^{-1}(G) = \langle x, f^{-1}(\mu_G), f^{-1}(\gamma_G) \rangle,$ are $f^{-1}(H) = \langle x, f^{-1}(\mu_H), f^{-1}(\gamma_H) \rangle$ $N(c_{r,s})$ and $N(d_{m,n})$ respectively. That is $f^{-1}(G)$ and $f^{-1}(H)$ are intuitionistic fuzzy open sets Now. $f^{-1}(\mu_G)(c_{r,s}) = \mu_G(f(c)) = 0,$ $f^{-1}(\gamma_{G})(c_{rs}) = \gamma_{G}(f(c)) = 1,$ and $f^{-1}(\mu_H)(d_{m_H}) = \mu_H(f(d)) = 1,$ $f^{-1}(\gamma_H)(d_{m_H}) = \gamma_H(f(d)) = 0$ $f^{-1}(G) \cap f^{-1}(H) = f^{-1}(G \cap H) = f^{-1}(0_{z}) = 0_{z}$. Hence, (X,T) is an intuitionistic fuzzy T_2 space.

DEFINITION.3.4 An intuitionistic fuzzy topological space (X,T) is said to be an intuitionistic fuzzy $G_{\delta} - e$ -local Urysohn space if and only if for every intuitionistic fuzzy points $c_{r,s}$ and $d_{m,n}$ in an intuitionistic fuzzy topological space (X,T) and $c \neq d$ there exists an intuitionistic fuzzy $G_{\delta} - e$ -locally open sets $G = \langle x, \mu_G, \gamma_G \rangle, H = \langle x, \mu_H, \gamma_H \rangle$ with

$$\begin{split} \mu_G(c) &= 0, \gamma_G(c) = 1, \mu_H(d) = 1, \gamma_H(d) = 0\\ \text{and} & IFG_{\delta} - e - lcl(G) \cap IFG_{\delta} - e - lcl(H) = 0 \end{split}$$

PROPOSITION.3.3 Every intuitionistic fuzzy $G_{\delta} - e$ -local Urysohn space is an intuitionistic fuzzy $G_{\delta} - e$ -local T_2 space.

Proof. Let (X,T) be an intuitionistic fuzzy G_{δ} - *e* -local Urysohn space. Then for every intuitionistic fuzzy points $c_{r,s}$ and $d_{m,n}$ in an intuitionistic fuzzy topological space (X,T)and $c \neq d$ there exists an intuitionistic fuzzy G_{δ} - *e* -locally open sets $G = \langle x, \mu_G, \gamma_G \rangle, H = \langle x, \mu_H, \gamma_H \rangle$ with $\mu_G(c) = 0, \gamma_G(c) = 1, \mu_H(d) = 1, \gamma_H(d) = 0$ $IFG_{\delta} - e - lcl(G) \cap IFG_{\delta} - e$ and $lcl(H) = 0_{z}$. Since $G \subseteq IFG_{\delta} - e - lcl(G)$ $H \subseteq IFG_{s} - e - lcl(H)$. and Then $G \cap H \subseteq IFG_{\delta} - e - lcl(G) \cap IFG_{\delta} - e - e$

lcl(H). This implies $G \cap H = 0$. Hence (X,T) is an intuitionistic fuzzy G_{δ} -e-local T_2 space..

Interraltion

DEFINITION.4.1 Let (X,T) and (Y,S) be two IFT's and let $f: X \to Y$ be a function. Then f is said to be an [(i)]intuitionistic fuzzy e-locally continuous iff the preimage of each IFCS in S is an intuitionistic fuzzy elocally closed set in T. [(ii)]intuitionistic fuzzy $G_{\delta} - e$ -locally continuous iff the preimage of each IFCS in S is an intuitionistic fuzzy $G_{\delta} - e$ -locally closed set in T. [(iii)]intuitionistic fuzzy eG_{δ} -locally continuous iff the preimage of each IFCS in Sis an intuitionistic fuzzy eG_{δ} -locally closed set in T.

PROPOSITION.4.1 Let (X,T) and (Y,S) be two intuitionistic fuzzy topological spaces. Let $f:(X,T) \rightarrow (Y,S)$ be an intuitionistic fuzzy G_{δ} -locally continuous function. Then f is an intuitionistic fuzzy G_{δ} -e-locally continuous function.

Proof. Let *A* be an intuitionistic fuzzy closed set in an intuitionistic fuzzy topological space (Y,S). Since *f* is an intuitionistic fuzzy G_{δ} locally continuous function, $f^{-1}(A)$ is an intuitionistic fuzzy $G_{\delta} - e$ -locally closed set in an intuitionistic fuzzy topological space (X,T). Since every intuitionistic fuzzy G_{δ} locally closed set is an intuitionistic fuzzy G_{δ} e-locally closed set, $f^{-1}(A)$ is also an intuitionistic fuzzy $G_{\delta} - e$ -locally closed set. Hence *f* is an intuitionistic fuzzy $G_{\delta} - e$ locally continuous function. **EXAMPLE.4.1** Let $X = \{a,b\} = Y$,

$$A = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.3}), (\frac{a}{0.6}, \frac{b}{0.6}) \right\rangle$$

$$B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.1}), (\frac{a}{0.5}, \frac{b}{0.4}) \right\rangle,$$

$$A \lor B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.3}), (\frac{a}{0.5}, \frac{b}{0.4}) \right\rangle,$$

 $A \wedge B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.1}), (\frac{a}{0.6}, \frac{b}{0.6}) \right\rangle,$ $C = \left\langle x, (\frac{a}{1}, \frac{b}{1}), (\frac{a}{0}, \frac{b}{0.1}) \right\rangle$. Now, the family $T = \{0, 1, A, B, A \lor B, A \land B\}$ of IFS's in X is an IFT on X and the family $S = \{0_{\alpha}, 1_{\alpha}, C\}$ of IFS's in Y is an IFT on Y. If we define the function $f: X \to Y$ be the identity function, then $f^{-1}(\overline{C})$ is an IFG_{δ} continuous but not IFe-locally locally continuous. $X = \{a, b\} = Y,$ Let **EXAMPLE.4.2** $A = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.3}), (\frac{a}{0.6}, \frac{b}{0.6}) \right\rangle,$ $B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.1}), (\frac{a}{0.5}, \frac{b}{0.4}) \right\rangle,$ $A \lor B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.3}), (\frac{a}{0.5}, \frac{b}{0.4}) \right\rangle,$ $A \wedge B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.1}), (\frac{a}{0.6}, \frac{b}{0.6}) \right\rangle,$ $D = \left\langle x, (\frac{a}{0.7}, \frac{b}{0.7}), (\frac{a}{0.7}, \frac{b}{0.1}) \right\rangle$. Now, the family $T = \{0, 1, A, B, A \lor B, A \land B\}$ of IFS's in X is an IFT on X and the family $S = \{0_{2}, 1_{2}, D\}$ of IFS's in Y is an IFT on Y. If we define the function $f: X \to Y$ be the identity function, then $f^{-1}(\overline{D})$ is an IFG_{δ} *e*-locally continuous but not IFG_{δ} -locally

continuous.
EXAMPLE.4.3 Let
$$X = \{a, b\} = Y$$
,
 $A = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.3}), (\frac{a}{0.6}, \frac{b}{0.6}) \right\rangle$,
 $B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.1}), (\frac{a}{0.5}, \frac{b}{0.4}) \right\rangle$,
 $A \lor B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.3}), (\frac{a}{0.5}, \frac{b}{0.4}) \right\rangle$,
 $A \land B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.1}), (\frac{a}{0.6}, \frac{b}{0.6}) \right\rangle$,
 $E = \left\langle x, (\frac{a}{0.5}, \frac{b}{0.5}), (\frac{a}{0}, \frac{b}{0.1}) \right\rangle$. Now, the
family $T = \{0_{\sim}, 1_{\sim}, A, B, A \lor B, A \land B\}$ of

IFS's in X is an IFT on X and the family

 $S = \{0_{-}, 1_{-}, E\}$ of IFS's in *Y* is an IFT on *Y*. If we define the function $f: X \to Y$ be the identity function, then $f^{-1}(\overline{E})$ is an IFe-locally continuous but not IFG_{δ} -*e*-locally continuous.

EXAMPLE.4.4 Let
$$X = \{a, b\} = Y$$
,
 $A = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.3}), (\frac{a}{0.6}, \frac{b}{0.6}) \right\rangle$,
 $B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.1}), (\frac{a}{0.5}, \frac{b}{0.4}) \right\rangle$,
 $A \lor B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.3}), (\frac{a}{0.5}, \frac{b}{0.4}) \right\rangle$,
 $A \land B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.1}), (\frac{a}{0.6}, \frac{b}{0.6}) \right\rangle$,
 $F = \left\langle x, (\frac{a}{0.6}, \frac{b}{0.6}), (\frac{a}{0.1}, \frac{b}{0.1}) \right\rangle$. Now, the
family $T = \{0, 1, A, B, A \lor B, A \land B\}$ of
IFS's in X is an IFT on X and the family
 $S = \{0, 1, F\}$ of IFS's in X is an IFT on Y is an IFT on Y.

 $S = \{0_{\sim}, 1_{\sim}, F\}$ of IFS's in Y is an IFT on Y. If we define the function $f: X \to Y$ be the identity function, then $f^{-1}(\overline{E})$ is an IFG_{δ} e-locally continuous but not IF-e-locally continuous.

EXAMPLE.4.5 Let
$$X = \{a, b\} = Y$$
,
 $A = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.3}), (\frac{a}{0.6}, \frac{b}{0.6}) \right\rangle$,
 $B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.1}), (\frac{a}{0.5}, \frac{b}{0.4}) \right\rangle$,
 $A \lor B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.3}), (\frac{a}{0.5}, \frac{b}{0.4}) \right\rangle$,
 $A \land B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.1}), (\frac{a}{0.6}, \frac{b}{0.6}) \right\rangle$,
 $G = \left\langle x, (\frac{a}{0.9}, \frac{b}{0.9}), (\frac{a}{0}, \frac{b}{0.1}) \right\rangle$. Now, the

family $T = \{0_{,1}, A, B, A \lor B, A \land B\}$ of IFS's in X is an IFT on X and the family $S = \{0_{,1}, G\}$ of IFS's in Y is an IFT on Y. If we define the function $f: X \to Y$ be the identity function, then $f^{-1}(\overline{G})$ is an $IFeG_{\delta}$ locally continuous but not IFG_{δ} -e-locally continuous.

EXAMPLE.4.6 Let
$$X = \{a, b\} = Y$$
,
 $A = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.3}), (\frac{a}{0.6}, \frac{b}{0.6}) \right\rangle$,
 $B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.1}), (\frac{a}{0.5}, \frac{b}{0.4}) \right\rangle$,
 $A \lor B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.3}), (\frac{a}{0.5}, \frac{b}{0.4}) \right\rangle$,
 $A \land B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.1}), (\frac{a}{0.6}, \frac{b}{0.6}) \right\rangle$,
 $G = \left\langle x, (\frac{a}{0.9}, \frac{b}{0.9}), (\frac{a}{0}, \frac{b}{0.1}) \right\rangle$. Now, the

family $T = \{0_{,}, 1_{,}, A, B, A \lor B, A \land B\}$ of IFS's in X is an IFT on X and the family $S = \{0_{,}, 1_{,}, G\}$ of IFS's in Y is an IFT on Y. If we define the function $f: X \to Y$ be the identity function, then $f^{-1}(\overline{G})$ is an $IFeG_{\delta}$ locally continuous but not IFG_{δ} -locally continuous.

EXAMPLE.4.7 Let
$$X = \{a, b\} = Y$$
,
 $A = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.3}), (\frac{a}{0.6}, \frac{b}{0.6}) \right\rangle$,
 $B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.1}), (\frac{a}{0.5}, \frac{b}{0.4}) \right\rangle$,
 $A \lor B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.3}), (\frac{a}{0.5}, \frac{b}{0.4}) \right\rangle$,
 $A \land B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.1}), (\frac{a}{0.6}, \frac{b}{0.6}) \right\rangle$,
 $H = \left\langle x, (\frac{a}{0.6}, \frac{b}{0.6}), (\frac{a}{0.3}, \frac{b}{0.1}) \right\rangle$. Now, the
family $T = \{0, 1, A, B, A \lor B, A \land B\}$ of

Infinity $Y = \{0_{\lambda}, 1_{\lambda}, H, B, H \lor B, H \lor B, H \lor B\}$ of IFS's in X is an IFT on X and the family $S = \{0_{\lambda}, 1_{\lambda}, H\}$ of IFS's in Y is an IFT on Y. If we define the function $f: X \to Y$ be the identity function, then $f^{-1}(\overline{H})$ is an IFG_{δ} locally continuous but not $IFeG_{\delta}$ -locally continuous.

EXAMPLE.4.8 Let
$$X = \{a, b\} = Y$$
,
 $A = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.3}), (\frac{a}{0.6}, \frac{b}{0.6}) \right\rangle$,
 $B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.1}), (\frac{a}{0.5}, \frac{b}{0.4}) \right\rangle$,

$$A \lor B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.3}), (\frac{a}{0.5}, \frac{b}{0.4}) \right\rangle,$$

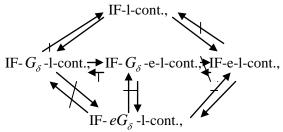
$$A \land B = \left\langle x, (\frac{a}{0.3}, \frac{b}{0.1}), (\frac{a}{0.6}, \frac{b}{0.6}) \right\rangle,$$

$$I = \left\langle x, (\frac{a}{0.5}, \frac{b}{0.4}), (\frac{a}{0}, \frac{b}{0.1}) \right\rangle$$
 Now, the
family $T = \{0_{2}, 1_{2}, A, B, A \lor B, A \land B\}$ of

IFS's in X is an IFT on X and the family $S = \{0_{2}, 1_{2}, I\}$ of IFS's in Y is an IFT on Y. If we define the function $f: X \to Y$ be the identity function, then $f^{-1}(\overline{I})$ is an Ife-locally continuous but not IF-locally continuous.

REMARK.4.1 Every intuitionistic fuzzy locally continuous is an intuitionistic fuzzy G_{δ} -locally continuous but the converse need not be true as shown in [7]

REMARK.4.2 Clearly the following diagram holds.



DEFINITION.4.2 An intuitionistic fuzzy topological space (X,T) is said to be intuitionistic fuzzy $G_{\delta} - e$ -local connected if and only if the only intuitionistic fuzzy sets which are both intuitionistic fuzzy $G_{\delta} - e$ -locally open set and intuitionistic fuzzy $G_{\delta} - e$ -locally closed set are 0_{\sim} and 1_{\sim} .

PROPOSITION.4.2 Let (X,T) and (Y,S) be any two intuitionistic fuzzy topological spaces. If $f:(X,T) \rightarrow (Y,S)$ is an intuitionistic fuzzy $G_{\delta} - e$ -locally continuous surjective function and (X,T) is an intuitionistic fuzzy $G_{\delta} - e$ -local connected space then (Y,S) is an intuitionistic fuzzy connected space.

Proof. Let (X,T) be an intuitionistic fuzzy $G_{\delta} - e$ -local connected space. Suppose that (Y,S) is not an intuitionistic fuzzy connected

space. Then there exists a proper intuitionistic fuzzy set A such that A is both intuitionistic fuzzy open set and intuitionistic fuzzy closed set in (Y,S). Since f is an intuitionistic fuzzy $G_{\delta} - e$ -locally continuous surjective function, then $f^{-1}(A)$ is both intuitionistic fuzzy $G_{\delta} - e$ -locally open set and intuitionistic fuzzy $G_{\delta} - e$ -locally closed set in (X,T), which is contradiction. Hence, (Y,S) is an intuitionistic fuzzy connected space.

DEFINITION.4.3 Let (X,T)be an intuitionistic fuzzy topological space. If a $\{\left\langle x,\mu_{G_j},\gamma_{G_j}\right\rangle: j\in J\}$ family of an intuitionistic fuzzy G_{δ} - *e* -locally open sets in satisfies the condition $\bigcup\{\left\langle x, \mu_{G_j}, \gamma_{G_j}\right\rangle: j \in J\}\} = 1_{\sim} \text{ then it is called}$ as an intuitionistic fuzzy G_{s} - *e* -locally open cover of an intuitionistic fuzzy topological space (X,T).

DEFINITION.4.4 An intuitionistic fuzzy topological space (X,T) is said to be intuitionistic fuzzy $G_{\delta} - e$ -local compact if every intuitionistic fuzzy $G_{\delta} - e$ -locally open cover of $\{A_j : j \in J\}$ of an intuitionistic fuzzy topological space (X,T), there exists a finite subfamily $J_0 \subset J$ such that $1_{\sim} = \bigcup \{A_j : j \in J_0\}$

PROPOSITION.4.3 Let (X,T) and (Y,S)be any two intuitionistic fuzzy topological spaces. If $f:(X,T) \rightarrow (Y,S)$ is an intuitionistic fuzzy $G_{\delta} - e$ -locally continuous bijective function and (X,T) is an intuitionistic fuzzy $G_{\delta} - e$ -local compact space then (Y,S) is an intuitionistic fuzzy $G_{\delta} - e$ local compact space.

Proof Let $\{A_j : j \in J\}$ be an intuitionistic fuzzy open cover of an intuitionistic fuzzy topological space (Y,S) such that $1_{\sim} = \bigcup_{j \in J} A_j$ Since f is an intuitionistic fuzzy $G_{\delta} - e$ -locally continuous bijective function, $\{f^{-1}(A_i) : j \in J\}$ is an intuitionistic fuzzy

 G_{δ} - *e* -locally open cover of an intuitionistic topological space (X,T).From, fuzzy $(ref{6e})$

$$f^{-1} = f^{-1}(\bigcup_{j \in J} A_j), 1_{\sim} = \bigcup_{j \in J} f^{-1}(A_j).$$
 Now

 $\{f^{-1}(A_i): j \in J\}$ is an intuitionistic fuzzy G_{δ} - *e* -locally open cover of an intuitionistic fuzzy topological space (X,T). Since (X,T)is an intuitionistic fuzzy G_{δ} - *e* -local compact space, then there exist a finite subcover $\{f^{-1}(A_i): j = 1, 2, 3, \dots n\}$ of

 $\{f^{-1}(A_i): j \in J\}$ is an intuitionistic fuzzy topological space (X,T). Then,

$$1_{\sim} = \bigcup_{j=1}^{n} f^{-1}(A_j)$$
. Now,

 $f(1_{\sim}) = f(\bigcup_{j=1}^{n} f(A_j))$. Since f is an intuitionistic fuzzy surjective

function, $1_{\sim} = \bigcup_{j=1}^{n} f(f^{-1}(A_j)) = \bigcup_{j=1}^{n} A_j$ implies

that (Y,S) is an intuitionistic fuzzy G_{δ} -elocal compact space.

REFERENCES

[1]K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, (1986), 87-96.

[2]G. Balasubramanian, Maximal fuzzy topologies, Kybernetika, 31,(1995), 459-465.

[3]D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88, (1997), 81-89.

[4] D. Coker and M. Demirci, On intuitionistic fuzzy points, Notes IFS, 2 (1) (1995), 79-84.

[5]M. Ganster and I. L. Relly, Locally closed sets and and LC-continuous functions, Intr., J. Math and Math. Sci., 12(3), (1989), 417-424. Completely continuous [6] I. M. Hanafy, function in intuitionistic fuzzy topological space, Czechoslovak Math. J., 53 (2003), 793-803.

[7] R. Narmada Devi, E. Roja and M. K. Uma, On Some Applications of Intuitionistic Fuzzy G_{δ} - α -locally Closed Sets, The Journal of Fuzzy Mathematics, 21(1) (2013), 85-98.

[8] G. Saravanakumr, S. Tamilselvan and A. Vadivel, Intuitionistic Fuzzy G_{δ} - *e* -locally Closed Sets-submitted.

[9]G. Saravanakumr, S. Tamilselvan and A. Intuitionistic Fuzzy G_{δ} - e -locally Vadivel, Continuous and Irresolute Functions.submitted.

[10]D. Sobana, V. Chandrasekar and A. On Fuzzy e-open Sets, Fuzzy e-Vadivel, continuity and Fuzzy *e*-compactness in Fuzzy Topological Intuitionistic Spaces, Sahand Communications in Mathematical Analysis in Press.

[11] S. S. Thakur and S. Singh, On fuzzy semi-pre open sets and fuzzy semi-pre continuity, Fuzzy Sets and Systems, (1998), 383-391.

[12]L. A. Zadeh, Fuzzy Sets, Information and Control, 8, (1965), 338-353.